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The characterization of electrosprayed droplets by means of retarding potential and
time-of-flight techniques yields relevant information on the physics of the cone–jet
itself. The experimental data reveal that a significant fraction of the electric power
injected in the cone–jet is degraded by ohmic and viscous dissipations, as well as
converted into surface energy. The degradation of energy can be cast in the form of a
measurable voltage deficit that depends on the fluid’s viscosity, electrical conductivity
and dielectric constant, but is independent of its flow rate. These experimental facts
require an identical scaling rt for both the characteristic radial and axial lengths of
the cone-to-jet transition, the region where conduction current is transformed into
convected surface charge. This fundamental scale is the geometric mean of the
electrical relaxation length and the distance from the Taylor cone apex where
the dynamic and capillary pressures become comparable. These two lengths are
of the same order in a wide range of operational conditions, which further confirms
the importance of the role played by electrical relaxation phenomena in the physics of
cone–jets. The validity of rt is further supported by the numerical results of Higuera
(J. Fluid Mech., vol. 484, 2003, pp. 303–327), whose profiles of the transition region
non-dimensionalized with rt remain unchanged when the flow rate is varied. Finally,
the dissipation of energy significantly increases the temperature of fluids with high
conductivities, and future models for the cone–jets of these liquids will need to account
for thermal effects.

Key words: capillary flows, electrohydrodynamic effects, MHD and
electrohydrodynamics

1. Introduction
Electrospraying is an atomization technique with a singular ability for producing

uniform sprays of droplets with diameters as small as a few tens of nanometres. In a
typical experimental configuration, a liquid is fed to the tip of a capillary electrode held
at high potential. The liquid then shapes into a conical meniscus issuing a slender jet,
which eventually becomes unstable and breaks into charged droplets. These capillary-
supported electrosprays were first systematically investigated by Zeleny (1914), and
the conical shape of the liquid meniscus was explained by Taylor (1964). Although
electrosprays can operate in a variety of regimes (Cloupeau & Prunet-Foch 1990),
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the so-called cone–jet mode (Cloupeau & Prunet-Foch 1989), characterized by the
formation of a steady jet, is of special interest and has been studied in great detail
(Fernández de la Mora 2007).

The generation of submicrometre-sized fluid structures is arguably the most
interesting feature of cone–jets. It is well suited for technological applications such
as electrospray mass spectrometry (Fenn et al. 1989), the encapsulation of drugs
(Loscertales et al. 2002), nanodroplet sputtering (Gamero-Castaño & Mahadevan
2009), combustion (Kyritsis et al. 2004), space propulsion (Gamero-Castaño & Hruby
2001), etc. It also provides an interesting area of research on free surfaces, with
length scales that can approach molecular dimensions and strong couplings between
hydrodynamics and electrical phenomena. The various theories for explaining the
behaviour of cone–jets generally consider three sequential regions: a static cone in
which ohmic conduction is the dominant current mechanism; a transition region
between the cone and the emerging jet where conduction current injects charge on
the surface of the liquid and progressively becomes surface current (i.e. convected
surface charge); and a jet accelerated by electrical forces and where surface current is
the dominant form of charge transport. The analysis of the cone-to-jet transition is the
central problem in these theories because the current and the diameter of the base of
the jet are fixed in this region, controlled by local parameters largely insensitive to the
variations of the geometry and electrostatics in the far field. For example, Fernández
de la Mora & Loscertales (1994) were able to explain the experimental current law
by considering a transition region dominated by electrical relaxation phenomena. In
contrast, Gañán-Calvo et al. (1996) and Gañán-Calvo (2004) inferred that the surface
charge is in equilibrium throughout the cone–jet, and obtained alternative scaling
laws for the current and jet diameter based on this idea. Gañán-Calvo (1997) has also
analysed the jet by coupling its dynamics with the electric field induced by the Taylor
cone, an idea that makes it possible to formulate a local model of the transition
region with asymptotic, far-field boundary conditions. Higuera (2003) has integrated
the complete set of partial differential equations for the transition region and has also
studied several asymptotic limits. Finally, the work of Collins et al. (2008), who solve
the complete set of equations in the cone–jet and surrounding electrostatic domain, is
a departure from the models centred in the transition region. Common to all cone–jet
theories is the use of simplifying hypotheses and the need to validate them with
experimental results.

The electric current and the droplet diameter are the parameters more commonly
measured and used to support electrospray models. The current is fixed in the
transition region and can be determined easily. However, the two opposite hypotheses
regarding charge relaxation yield a similar current law for most cone–jets (Fernández
de la Mora & Loscertales 1994; Gañán-Calvo 1997), and therefore the comparison
between measured and predicted values cannot clarify which point of view is correct.
A validation based on the droplet diameter is equally inconclusive, because this
parameter is determined by the jet dynamics and its inherently random breakup,
and therefore does not directly relate to the physics of the transition region. This
problem is compounded by the natural distribution of droplet sizes and the difficulty
of measuring droplet diameters with the accuracy required to distinguish between
relatively similar scaling laws (Fernández de la Mora & Loscertales 1994; Gañán-
Calvo 1997). The need for new measurements able to yield discriminating information
directly connected to the transition region is hence clear and provides one motivation
for the present study.
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Cone–jets may be probed through measurements carried out at reduced pressure
or in a vacuum, and there is a long tradition of doing so in the so-called
electrohydrodynamic ionization (Cook 1986). The current can then be investigated
very much as under atmospheric pressure, and this has shown that the background gas
and the space-charge effects associated with the transport of charged drops through
the gas have negligible effects on the characteristics of the jet (Gamero-Castaño et al.
1998). Furthermore, in a vacuum, the sum of the potential and kinetic energy of a
drop is conserved following its release from the jet, and may hence be measured in
the form of the voltage φS required to stop their flow to a collecting electrode. This
stopping voltage is generally smaller than the voltage φE applied to the electrode
supporting the cone–jet, so that the difference ∆ = φE − φS may be interpreted as
the voltage deficit or irreversible loss of energy (per unit charge) needed to form the
drop. For the case of liquid metals, energy analysis of the ejected ions has shown
that there is no measurable voltage drop involved in the formation of the jet (Prewett
& Mair 1991). But the situation is quite different for electrolytes, where the finite
electrical resistance of the liquid is a key factor controlling the jet dynamics. Indeed,
Huberman’s (1970) pioneering stopping potential study with glycerol indicated that,
in this case, there is a substantial voltage deficit. Because the voltage deficit is in
principle a computable quantity, its systematic measurement should shed new light
on the physics of cone–jets and provide a reference to test the various theories.

This study focuses on the determination of the voltage deficit of cone–jets and
its relationship with the physics of the transition region, and is organized as
follows. Section 2 presents the properties of the studied liquids, a description of the
experimental set-up with focus on the retarding potential analysers and an induction
charge detector (ICD) for characterizing individual drops, and electrospray current
data. Section 3.1 introduces the retarding potential measurements and establishes a
link between the voltage drop, the dissipation of energy and the generation of surface
energy in the cone–jet. Section 3.2 rationalizes the spread of the retarding potential
distributions. Section 3.3 presents the remarkable independence between the voltage
deficit and the flow rate, establishes the functional dependence of the voltage deficit
via dimensional analysis and demonstrates that the dissipation of energy is responsible
for the largest fraction of the voltage deficit. Section 3.4 derives the geometric scaling
of the transition region and discusses the implications of this scale on the physics of
cone–jets. Finally, the main results of this study are summarized in § 4.

2. Experimental
Figure 1(a) is a sketch of the experimental set-up. The liquid to be electrosprayed

is held in a glass reservoir and fed into a vacuum chamber through a capillary tube.
The pressure inside the reservoir driving the liquid flow rate Q is monitored and
controlled with a vacuum pump, compressed nitrogen and a transducer. The emitter
and the feeding line are made of a single stainless-steel tube with inner and outer
diameters of 100 and 220 µm. A voltage difference between the emitter and a facing
extractor is applied to form a cone–jet. The resulting charged drops exit the emitter
and extractor regions through a small orifice perforated in the extractor, and enter
an area where they are analysed by several detectors. A background pressure of 10−6

Torr is sustained with a combination of turbomolecular and mechanical pumps. The
mean free path of nitrogen molecules at this pressure and ambient temperature is
approximately 50 m, and therefore a drop’s loss of kinetic energy due to collisions
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Figure 1. (a) Experimental set-up. Liquid solutions are electrosprayed in a vacuum, producing
charged droplets that are characterized with retarding potential and time-of-flight detectors.
(b) Cumulative retarding potential analyser. The beam current reaching the collector is
measured as a function of the retarding potential.

with the background gas is negligible. The entire electrospray beam is characterized
with a time-of-flight detector and a cumulative retarding potential analyser. The
time-of-flight (TOF) detector has been described in detail elsewhere, and is mainly
used to measure the mass flow rate of the electrospray (Gamero-Castaño & Hruby
2001). The cumulative retarding potential analyser is shown in figure 1(b): the planar
electric field between the grounded extractor and a facing collector can be made large
enough to turn the incoming flux of charged droplets, and the current striking the
collector is measured with an electrometer as a function of the retarding potential.
A droplet with a velocity vector in the direction of the electric field is sensed by the
electrometer if and only if its stopping potential φS is larger than the potential of the
collecting electrode φRP . The stopping potential of a droplet is the sum of its kinetic
and potential energies divided by its charge, and therefore is a constant of motion in
a stationary electric field:

φS =
m

q

v2(x)

2
+ φ(x) = constant. (2.1)

Droplets entering the gap at an angle θ with the electric field require a smaller
retarding potential to prevent collection:

φRP = cos2(θ)φS. (2.2)

The electrospray beams are conical, and therefore the detector in figure 1(b)
produces retarding potential distributions with an artificial tail at low retarding
potentials. This error increases with the current (the higher the current, the larger the
beam angle) and is relatively small for these narrow beams.

We have also measured the stopping potential, charge and diameter of individual
droplets with a differential retarding potential analyser and an ICD operating in
tandem (Gamero-Castaño 2009). The spectrometer is sketched in figure 2(a). The
droplets exit the extractor with radial trajectories, making it possible to sample
drops at different polar angles by rotating the emitter. A charged droplet enters
the retarding potential analyser (essentially an electrostatic mirror) through a small
orifice, and its path is deflected by a planar and homogeneous electric field. The
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Figure 2. (a) Differential retarding potential analyser and ICD. When operating in tandem,
this combination yields the retarding potential, charge and diameter of individual droplets.
(b) Experimental values of the dimensionless electrospray current and flow rate QH . The

current exhibits the typical Q
1/2
H law and also depends on the dielectric constant.

geometry of the electrodes is such that the droplet exits the mirror through a second
orifice when its stopping potential coincides with the potential difference between the
plates. The exit orifice is aligned with the four tubular electrodes of the ICD, and
the droplet induces an electric potential proportional to its charge on two of them as
it flies through. The potential difference between these tubes is amplified, generating
a one-period rectangular wave from which the droplet’s charge and time of flight
are measured. The time-of-flight measurement combined with the known stopping
potential yields the droplet’s charge-to-mass ratio, while the mass is obtained from
this parameter and the charge measurement; the droplet diameter is computed from
the mass and the liquid density (Gamero-Castaño 2009). We also measure stopping-
potential distributions with the electrostatic mirror, using a second pair of orifices
10 mm above those aligned with the ICD. The droplets exiting the mirror impinge
on a collecting electrode where the current is recorded as a function of the retarding
potential.

The need to work in vacuum requires liquids with low vapour pressure to minimize
evaporation losses. It is important to cover a wide range of electrical conductivities,
a physical parameter with a strong influence on the cone–jet and which can be
made to span orders of magnitude by varying the concentration of dissolved
electrolytes. We have studied solutions based on propylene carbonate, formamide
and tributyl phosphate, all of which are highly involatile and moderately viscous.
Tributyl phosphate solutions with different conductivities were made by adding small
concentrations of the salt tetrabutylammonium tetraphenylborate, or the ionic liquid
EmiIm (McEwen et al. 1999). Likewise, propylene carbonate and formamide solutions
were formulated with different concentrations of the EmiIm solute. Table 1 lists the
electrical conductivity K of the solutions investigated in this paper. Their densities
ρ, surface tensions γ , viscosities µ, heat capacities c and dielectric constants ε are
assumed to be those of the pure solvents and given in table 2 (Riddick, Bunger &
Sakano 1986).

Figure 2(b) shows the basic electrospray current data scaled with (γ 2ε0/ρ)1/2, as a
function of the dimensionless flow rate QH , for most solutions in table 1. Any cone–jet
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Solution PC1 PC2 PC3 PC4 FORM1 FORM2

K (S m−1) 0.121 0.0142 2.23 × 10−3 9.47 × 10−4 0.104 0.0161
∆ (V) 217 245 340 390 270 320

Solution TBP1 TBP2 TBP3 TBP4 TBP5 TBP6

K (S m−1) 5.8 × 10−3 1.1 × 10−3 5.32 × 10−4 1.0 × 10−4 1.1 × 10−5 4.1 × 10−6

∆ (V) 131 185 210 307 520 754

Table 1. Electrical conductivity and total voltage deficit of the propylene carbonate (PC),
formamide (FORM) and tributyl phosphate (TBP) solutions characterized in this study.

Solvent ρ (Kg m−3) γ (N m−1) µ (Pa s) c (J (KgK)−1) ε

PC 1200 0.0419 0.00276 1210 (25 ◦C) 64.9 (25 ◦C)
FORM 1133 0.0583 0.00376 2390 (25 ◦C) 111
TBP 976 (25 ◦C) 0.0275 0.00339 (25 ◦C) 8.91 (25 ◦C)

Table 2. Density, surface tension, viscosity, specific heat capacity and dielectric constant of
propylene carbonate, formamide and tributyl phosphate. Unless otherwise specified, the values
are for a temperature of 20 ◦C.

variable, made dimensionless with the appropriate scale, is a function of at most three
dimensionless groups (Higuera 2003). The parameters ρ, γ , K and the permittivity of
the vacuum ε0 are generally employed to define scales, while the dielectric constant,
the dimensionless flow rate and the Reynolds number,

QH =
ρKQ

γ ε0

, Re =
ρ1/3ε

1/3
0 γ 2/3

µK1/3
, (2.3)

are the common choices for independent dimensionless groups. Fernández de la
Mora & Loscertales (1994) have also used the alternative dimensionless flow rate
QFM = ρKQ/(γ εε0).

The data in figure 2(b) approximately follow a Q
1/2
H law, as predicted by the theories

of Fernández de la Mora and Gañán-Calvo (2004). At fixed QH , the current diminishes
with increasing dielectric constant, which is compatible only with Fernández de la
Mora’s scaling. Our data also compare well with the values computed by Higuera
(2003) for the dielectric constants 5 and 50. For example, we measure dimensionless
currents of 5.14 and 7.8 for PC4 at QH = 15.3 (ε = 64.9, Re =0.98), and TBP4 at
QH = 12.5 (ε =8.91, Re = 1.12). Higuera reports a current of 5.42 for QH = 15.3, ε =
50 and Re = 1 (a point similar to PC4’s) and a value of 8.60 for QH = 12.5, ε = 5
and Re = 1 (a point similar to TBP4’s). More generally, the current computed by
Higuera increases with decreasing dielectric constant, and our figure confirms that
this trend continues at much higher flow rates. (Higuera studies only dimensionless
flow rates smaller than 20.)

Before moving to the retarding potential investigation, we would like to emphasize
the extent of the operational range characterized in this study. For example, the
electrical conductivity and the dielectric constant have been varied by factors of
3.0 × 104 and 12.5, while the flow rates for almost every solution start near the
minimum value and end at the onset of lateral oscillations in the jet (Rosell-Llompart
& Fernández de la Mora 1994).



Energy dissipation in electrosprays and the geometric scaling 499

θ (deg.) 〈D〉 (µm) σD/〈D〉 (%) 〈q〉 (C) σq/〈q〉 (%) 〈ξ〉 (C kg−1) σξ/〈ξ〉 (%)

0 0.931 7.60 2.70 × 10−15 21.8 5.59 4.61
4 0.871 6.64 2.23 × 10−15 19.1 5.65 5.30
6 0.824 6.07 1.88 × 10−15 16.9 5.65 6.92
8 0.754 5.77 1.44 × 10−15 15.1 5.70 8.62

Table 3. Average and relative standard deviation of the diameter, charge and charge-to-mass
ratio of PC3 droplets for a 4.9 × 10−12 m s−3 flow rate (33 nA electrospray current) and four
different polar angles. The drops are sampled in the full range of stopping potentials.
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Figure 3. (a) Emitter potential minus drop’s retarding potential spectra of a PC3 electrospray
(I = 33 nA), measured at four different polar angles with the differential retarding potential
analyser. The droplets have a significant voltage deficit due to the dissipation of energy and
the generation of surface in the cone–jet. (b) Sketch of the cone–jet.

3. Discussion
3.1. The stopping potential of a droplet and its correlation with cone–jet parameters

Figure 3(a) shows typical stopping potential distributions for a PC3 beam with a flow
rate of 4.9 × 10−12 m s−3 and a current of 33 nA. The distributions are measured
with the differential retarding potential analyser at four different polar angles. (The
envelope of the beam has an angle of 9◦.) The averages and standard deviations of the
droplets’ diameter, charge and charge-to-mass ratio are given in table 3. The abscissa
of figure 3(a) is the potential of the emitter (2040 V) minus the retarding potential,
and therefore may be regarded as the voltage deficit of the drops. The average deficit
of 350 V suggests that 17 % of the electrical power transferred to the electrospray
is degraded in the cone–jet and not converted into beam kinetic power. The goal of
this section is to correlate this potential deficit with hydrodynamic parameters in the
cone–jet. For simplicity, we will first examine an ideal breakup producing identical
droplets, while the complexities associated with the distributions of droplets’ charges
and diameters will be analysed in § 3.2.

Let us consider the idealized geometry of an electrospray depicted in figure 3(b),
which includes the Taylor cone, a transition region, the jet, the jet breakup and emitted
droplets. The surfaces Σ1 and Σ2 are the intersections of rθ planes with the cone–jet
far upstream and near the jet breakup, while Σ0 is the surface of revolution. The
following expression can be derived by integrating the equation of mechanical energy
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over the volume Π enclosed by the three surfaces (see derivation in the supplementary
online material, available at journals.cambridge.org/flm):(

v2
2

2
+

p2

ρ

)
−

(
v2

1

2
+

p1

ρ

)
=

I

ρQ
(φ1 − φ2) − PΩ + Pµ

ρQ
, (3.1)

where φ is the electric potential, v and p are the fluid’s velocity and pressure, and PΩ

and Pµ are the total ohmic and viscous powers dissipated in the cone–jet,

PΩ =

∫
Π

E · J dV, Pµ =

∫
Π

τµ : ∇v dV , (3.2)

where E, J and τµ stand for the electric field, the conduction current density in the
liquid bulk and the viscous stress tensor. The electrical power I (φ1 − φ2) transferred
to the cone–jet is partially converted into mechanical energy and partially degraded
by viscous and ohmic dissipations (which in turn increase the internal energy and the
temperature of the fluid). The specific kinetic energy and the pressure decay very fast
upstream of the transition region because of the increasing cross-section of the Taylor
cone, and therefore the term in the second bracket in (3.1) can be neglected. We next
assume that the periodic breakup takes place within a short distance, so that the poten-
tial difference between the emitted drops and the jet is negligible, φ2

∼= φ3. Conserva-
tion of charge and mass then requires the charge-to-mass ratio ξ of the drops to be that
of the fluid in the jet ξJ , while conservation of momentum requires a velocity jump:

ξ = ξJ , v2 − v3 =
2πR2γ

ρQ
− πR2

2p2

ρQ
= v2

(
2γ

ρv2
2R2

− p2

ρv2
2

)
, (3.3)

where R(z) stands for the radius of the jet. The jump in velocities is a function of
jet variables only and is a small fraction of the velocity because at Σ2 the capillary
pressure is significantly smaller than the dynamic pressure. We now use (3.3) and
φ2 = φ3 to express the stopping potential of the droplets in terms of jet variables,

φS =
v2

3

2ξJ

+ φ3 =
1

2ξJ

(
v2 − 2πR2γ

ρQ
+

πR2
2p2

ρQ

)2

+ φ2, (3.4)

and ξJ = I/(ρQ) and (3.1) to obtain

φS = φ1 − PΩ + Pµ

I
− 2Qγ

IR2

+
Q

I

2

ρv2
2

(
γ

R2

− p2

2

)2

. (3.5)

Since the capillary pressure is significantly smaller than the dynamic pressure, the
fourth term on the right-hand side can be neglected with respect to the third one.
This finally yields the equation for the voltage deficit ∆:

∆ = ∆Ω + ∆µ + ∆γ , (3.6)

∆ = φ1 − φS, ∆Ω =
PΩ

I
, ∆µ =

Pµ

I
, ∆γ =

2Qγ

IR2

. (3.7)

The voltage deficit results from the degradation of mechanical and electrical energy
by dissipative processes, together with the generation of surface. (2Qγ/IR2 is the
flux of surface energy across Σ2, divided by the electrospray current.) Although, for
convenience, in the narrative we will refer to ∆, ∆Ω , ∆µ and ∆γ as the total, ohmic,
viscous and surface voltage deficits, none of these terms should be confused with a
difference of electric potentials between two points.
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Figure 4. Retarding potential distributions for FORM2 obtained with the electrostatic mirror.
(a) Spectra associated with main droplets at the beam axis and for different flow rates.
(b) Spectra for a high flow rate (I = 149 nA) recorded throughout the beam angular range.
All the spectra are for main droplets, except the one at 20◦ which is for satellites.

3.2. The broadening of the retarding potential distribution

The structure and complexity of the sprays produced by cone–jets vary with the flow
rate. Most cone–jets operating at or near the minimum flow rate only produce main
droplets with relatively narrow diameter and charge-to-mass-ratio distributions (see
table 3). As the flow rate increases, a critical point is reached that triggers the formation
of satellite droplets and increasing numbers of them are generated thereafter (Ashgriz
& Mashayek 1995). Satellite droplets result from the detachment of the fluid ligament
connecting two main droplets, and are smaller and have a higher charge-to-mass
ratio (López-Herrera & Gañán-Calvo 2004; Collins, Harris & Basaran 2007). When
satellite droplets are produced the charge-to-mass-ratio distribution of the main drops
broadens, because those yielding satellites lose more charge than mass to them, while
those that do not retain a charge-to-mass ratio similar to that of the jet. If the flow
rate is further increased, a second critical point is reached at which the jet becomes
susceptible to sinusoidal perturbations, oscillates and generates droplets in a much
broader diameter distribution lacking distinct droplet families. This phenomenology
is best observed with time-of-flight spectrometry (Gamero-Castaño & Hruby 2002;
Gamero-Castaño 2008) and is also evident in the retarding potential curves: satellite
and main droplets have two distinct, separate ranges of stopping potentials; the
standard deviation of main droplets is smallest for breakups producing only main
droplets and increases when satellites are generated; and the maximum retarding
potential of main droplets increases with the flow rate, while their minimum retarding
potential remains constant. We illustrate this in figure 4 with spectra for FORM2.
Figure 4(a) shows retarding potential distributions of main droplets at different flow
rates, sampled in the beam axis. The potential of the emitter is 2420 V. The two
spectra for the lowest currents are similar; satellite droplets start to appear near a
current of 67 nA, and from this point forward, the main droplet distributions become
noticeable broader and shift to larger voltage values. Figure 4(b) shows distributions
for the higher flow rate at different polar angles and that of the lowest flow rate as
a reference. It is known that when the two populations of droplets are present in
the same spray they separate into two coaxial beams, the satellites surrounding the
main droplets (Gamero-Castaño 2008). Thus, in the case of the 149 nA electrospray,
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Figure 5. Stopping potential of individual droplets versus diameter, charge and
charge-to-mass ratio. The stopping potential is well correlated with the charge-to-mass ratio.
The graphs contain data for 1195 droplets sampled from the PC3 spray of figure 3(a).

the satellite drops only appear at angles larger than 16◦, while main droplets are
only detected at angles smaller than 13◦. Figure 4(b) shows that the satellite drops
(the spectrum at a 20◦ angle) have stopping potentials significantly smaller than, and
separated from, those of main drops. A weaker angular segregation also occurs within
the main droplet population, with higher charge-to-mass ratios and lower retarding
potentials predominantly appearing at increasing angle. It is worth noting that the
main droplets of the 149 nA electrospray with smaller stopping potential (those at a
12◦ angle) have a distribution engulfed by that of the 40 nA electrospray, despite the
two flow rates being separated by a ratio of 8.1. This clustering occurs for all flow
rates and solutions characterized in this study. Thus, it is apparent that the maximum
stopping potential of main drops increases with the flow rate, but their minimum
stopping potential is constant and equal for all flow rates. The significance of this
observation will be discussed in § 3.3.

Understanding what causes the spread of retarding potentials is important because
a value from the distribution needs to be chosen as ∆. The correlation between the
stopping potentials of droplets and their various diameters, charges and charge-to-
mass ratios is the likely origin of the spread, a hypothesis that we test in the next
set of plots. Figure 5 shows the retarding potential versus the diameter, charge and
charge-to-mass ratio of 1195 droplets for the PC3 electrospray in figure 3(a) and
table 3. The retarding potential clearly depends on the charge-to-mass ratio (the
Pearson’s correlation coefficient is ρφξ = −0.82), it does not depend on the charge
(ρφq = 0.018), and exhibits a moderate correlation with the diameter (ρφD = 0.21).
The latter is probably due to the correlation between diameter and charge-to-mass
ratio, ρDξ = −0.22. The negative correlation between a drop’s charge-to-mass ratio
and its retarding potential is explained by the kinetic energy gained by the fluid in
the jet, coupled with the natural distribution of charge-to-mass ratios induced by the
random breakup. This is better illustrated by neglecting the small variations of the
potential and velocity in the breakup,

φS =
v2

3

2ξ
+ φ3

∼=
v2

2

2ξ
+ φ2 =

ξJ

ξ
(φSJ − φ2) + φ2, (3.8)

where φSJ is the stopping potential of the fluid in the jet. In a breakup with a
stationary location, φSJ and φ2 are constant, and the retarding potential of a droplet
is proportional to the ratio ξJ /ξ . Hence, the higher the droplet’s charge-to-mass ratio,
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Figure 6. The voltage deficit of cone–jets does not depend on the flow rate. (a) Spectra for
four PC3 flow rates measured at the beam axis with the electrostatic mirror. (b) Spectra for
several TBP2 and TBP4 flow rates obtained with the cumulative retarding potential analyser.

the smaller its retarding potential. This is the trend observed in figure 5(c) for main
droplets and the reason for the reduced stopping potentials of satellites in figure 4(b).

The natural variation of the charge-to-mass ratio is the most important, but not the
only factor causing the broadness of the stopping potential distribution. For example,
figure 5(c) shows that droplets with the same charge-to-mass ratio do have a narrow
range of stopping potentials. In the absence of a correlation with the diameter and
charge, this spread must be due to random processes in the breakup such as the
variation of its axial location and the time-dependent Coulombic interaction between
nearby droplets. These random contributions should average out, and (3.8) may then
be used to approximate the average retarding potential of the droplets with a given
charge-to-mass ratio ξ .

Going back to the problem of determining the value of the stopping potential
φS to be inserted in (3.7), it is clear that the average stopping potential of droplets
having the same charge-to-mass ratio as the jet is the correct answer. For the
lowest flow rates producing main droplets only, the ξ -distribution resembles a narrow
Gaussian centred at ξJ , the stopping potential distributions are Gaussian-like and
narrow as well, and therefore the average of the latter is approximately the average
stopping potential of the droplets with a charge-to-mass ratio equal to that of the jet,
〈φRP 〉 ∼= 〈φRP (ξ = ξJ )〉. This greatly simplifies the determination of ∆, because it can
be directly obtained from the peak of the retarding potential distribution. Conversely,
when satellites are produced, the ξ -distribution of main droplets is not centred around
ξJ , this and the stopping potential distribution are much broader, and the peak of the
stopping potential curve cannot be used to infer ∆. This complicates the estimation
of ∆ because it requires a detailed characterization of individual droplets.

3.3. The total voltage deficit and flow rate are independent

Figure 6(a) shows retarding potential distributions for several flow rates of PC3,
measured at the beam axis with the electrostatic mirror. The potential of the
emitter is 2040 V. At these low flow rates, no satellite droplets are generated, the
resulting retarding potential and charge-to-mass-ratio distributions are narrow, and
the emitter potential minus the average retarding potential is a good estimate of ∆.
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The distributions have almost identical averages and widths despite a change in the
flow rate by a factor of 7.1, and therefore ∆ is constant, independent of the flow
rate. This surprising fact is observed in every formamide, propylene carbonate and
tributyl phosphate solution. For example, figure 6(b) shows distributions obtained
with the cumulative retarding potential analyser for several flow rates of TBP2 and
TBP4, all below the critical one triggering the formation of satellite drops. Unlike the
data in figure 6(a) where only a small fraction of the beam is analysed, each one of
these spectra captures the whole electrospray. It is striking that the distributions for
a given solution are remarkably identical, regardless of the flow rate. The tail of the
distributions does extend to higher potential deficits at increasing current, but this is
an artefact of the increasing broadening of the beam (Gamero-Castaño 2008) and the
underestimate of the stopping potential of droplets in the outer region of the beam.
The electrostatic mirror is free from this problem, and it was shown in § 3.2 that the
minimum stopping potential of main droplets does not decrease with increasing flow
rate, but remains constant. As mentioned before, we have observed this phenomenon
in every liquid analysed with the electrostatic mirror, which includes all formamide
and propylene carbonate solutions, and TBP3. The explanation of this interesting
observation is now obvious: the physics of the cone–jet are such that the voltage
deficit of the fluid in the jet does not depend on the flow rate and, according to the
discussion in § 3.2, the same is true for those main droplets with ξ = ξJ . In the absence
of satellites, all droplets have a charge-to-mass ratio similar to that of the jet, and
therefore their retarding potential distributions are in a narrow voltage range that
does not depend on the flow rate. When satellites are produced, the main droplets with
higher charge-to-mass ratio are those formed by the shortest wavelengths unable to
produce satellites, and therefore having ξ ∼= ξJ . Consequently, the retarding potentials
of these drops, which are the lowest among the main droplet population for any given
flow rate, must be in the same flow-rate-independent range observed in the absence
of satellites. This is neatly illustrated by the distributions in figure 4(b) for I = 40
and I = 149 at 12◦, the latter being the angular position of main droplets with lowest
retarding potentials. In summary, ∆ and Q are independent for all flow rates studied
in this paper, regardless of whether satellite drops are produced or not.

Table 1 lists the total voltage deficit for each solution. The variable ∆ augments
with decreasing electrical conductivity and increasing dielectric constant. A deeper
insight can be obtained with the help of dimensional analysis: upon using the scale
φ0 = γ 2/3/(K1/3ε

1/6
0 ρ1/6) and the experimental evidence to drop Q from the general

dependence, the dimensionless total voltage deficit is given by

∆

φ0

= Π∆(Re, ε). (3.9)

According to (3.6), ∆ is proportional to the viscous voltage deficit, which is
proportional to the viscosity. Therefore, ∆/φ0 should be proportional to 1/Re. This
is confirmed in figure 7, which shows a linear dependence between the two variables:

∆

φ0

= α(ε) + β(ε)
1

Re
. (3.10)

The slope and the y-intercept are functions of the dielectric constant. For a family
of liquids with different conductivities but equal density, surface tension, viscosity
and dielectric constant, ∆ initially decreases linearly with 1/K and asymptotes to a
constant value for large K. The dependence on the dielectric constant appears to
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Figure 7. The dimensionless voltage deficit is a linear function of the inverse of the Reynolds
number. The slope and y-intercept are functions of the dielectric constant.

be asymptotic at large ε, because the data for the very polar propylene carbonate
and the extremely polar formamide fall near the same line. The linear fitting for
the significantly less polar tributyl phosphate has smaller slope and y-intercept. The
dependence of ∆/φ0 on the Reynolds number suggests that a significant fraction of the
electric power is degraded by viscous dissipation, while the y-intercept suggests that
a fraction of the total voltage deficit is associated with ohmic dissipation and the
generation of surface energy. The importance of viscous dissipation is puzzling in
the context of existing cone–jet theories (Fernández de la Mora & Loscertales 1994;
Gañán-Calvo 2004), because these models predict currents and jet diameters that do
not depend on the viscosity.

We next estimate the surface voltage deficit to determine its relative importance.
The parameter ∆γ , given by (3.7), may be evaluated with the values of the electrospray
current, flow rate and average diameter of main droplets. The factor 1.89 associated
with inviscid jet breakup is a good estimate for the ratio between the average droplet
and jet diameters. Figure 8(a) displays ∆γ /∆ as a function of ∆γ /φ0. The surface
voltage deficit is between 10 and 22 % of the total voltage deficit, and therefore
the largest fraction of ∆ must be associated with dissipative effects. This result is
important because the degradation of energy is concentrated in the transition region,
and therefore the total voltage deficit is directly related to the physics of this area.
The dependence of the surface voltage deficit on the operational parameters can
be determined by substituting into (3.7) the expression for the electrospray current,
I = a(ε)(γQK)1/2, and Gañán-Calvo’s diameter scale, rGC = (ρε0Q

3/γK)1/6:

∆γ

φ0

= g(ε). (3.11)

These laws for the current and jet diameter, which are known to fit the experimental
data well, show that the dimensionless surface voltage deficit is a function of only
the dielectric constant, and therefore a fraction of the y-intercept, α(ε). Several values
for propylene carbonate depart from (3.11). This is likely to be due to our indirect
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total voltage deficit, and therefore the ohmic and viscous dissipations are the dominant
contributions. (b) Average diameter of electrospray droplets in rGC units versus dimensionless
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estimate of the jet diameter, which is computed from an incomplete sample of the
droplet population. Figure 8(b) shows the average diameters used for the estimate,
obtained from samples at or near the beam axis. The droplet diameters normalized
with the rGC scale should display a horizontal trend, but they depend on the flow
rate for the case of propylene carbonate. In our opinion, this is a deficiency of
the measurements, rather than of the rGC scaling: the average diameter cannot be
computed accurately from a droplet sample limited to the beam axis, and it does
not account for the angular segregation of droplets by diameters and charge-to-mass
ratios. The more direct estimate of the jet diameter by Gamero-Castaño & Hruby
(2002) strongly supports Gañán-Calvo’s diameter scaling, and therefore the validity
of (3.11). In the next section, we will show that rGC , multiplied by ε1/6, is indeed the
correct characteristic radial and axial length of the transition region.

3.4. The geometric scaling of the transition region

The dissipative processes are concentrated in the cone-to-jet transition because this
is where the largest velocity gradients and electric fields are. Therefore, the scaling
law (3.10) for the total voltage deficit must convey information on the physics of the
transition region. To extract this information, we will integrate the ohmic and viscous
power densities over the cone–jet volume, and find approximate expressions for PΩ

and Pµ in terms of the radial rn and axial ln characteristic lengths of the transition
region. These will then be inserted in (3.10) to find the forms of rn and ln. The viscous
dissipation power density in the axisymmetric cone–jet is given by

τµ : ∇v = 2µ

[(
∂vr

∂r

)2

+
(vr

r

)2

+

(
∂vz

∂z

)2

+
1

2

(
∂vz

∂r
+

∂vvr

∂z

)2
]
. (3.12)

It can be shown that the term in the last bracket is negligible, and the equation of
continuity may then be used to bound τµ : ∇v:

2µ

(
∂vz

∂z

)2

< τµ : ∇v < 4µ

(
∂vz

∂z

)2

. (3.13)
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We now assume a flat velocity profile, vz = Q/πR2(z), and integrate the upper
bound over the volume of the cone–jet to obtain

Pµ ≈
∞∫

−∞

8µQ2

πR4

(
dR

dz

)2

dz ≈ 16µQ2

3πr3
n

(
1 +

rn

ln

)
, ∆µ ≈ 16µQ3/2

3πaγ 1/2K1/2

1

r3
n

(
1 +

rn

ln

)
.

(3.14)

The value of dR/dz is tan(49.2◦) ∼= 1 in the Taylor cone, of the order of rn/ ln
in the transition region and negligible in the jet. We also use the scaling law
I = a(ε)(γKQ)1/2 to express ∆µ. It is worth noting that the viscous dissipation
is proportional to the viscosity and strongly depends on rn.

The net ohmic power is given in (3.2) and can be estimated as

PΩ ≈
∞∫

−∞

I 2
c

KπR2
dz ≈ I 2

Kπrn

(
1 +

ln

4rn

)
, ∆Ω ≈ aγ 1/2Q1/2

πK1/2rn

(
1 +

ln

4rn

)
, (3.15)

where Ic stands for the intensity of the conduction current in the liquid bulk. The
viscous, ohmic and surface voltage deficits may now be inserted in (3.10) to find the
scalings of rn and ln:

8µQ3/2ε
1/6
0 ρ1/6

3πaγ 7/6K1/6

1

r3
n

(
1 +

rn

ln

)
+

aQ1/2ε
1/6
0 ρ1/6

πK1/6γ 1/6

1

rn

(
1 +

ln

4rn

)

= α(ε) − g(ε) + β(ε)
µK1/3

ρ1/3ε
1/3
0 γ 2/3

. (3.16)

The viscous voltage deficit is clearly responsible for the proportionality between the
total voltage deficit and the inverse of the Reynolds number, while the dimensionless
ohmic voltage deficit is a fraction of the y-ordinate α(ε). More importantly, (3.16)
requires that both rn and ln have the same scaling rt :

rn = N(ε)rt , ln = M(ε)rt , rt =

(
ρεε0Q

3

γK

)1/6

. (3.17)

The characteristic radial and axial lengths of the transition region are proportional
to rt , the proportionality constants being functions of ε. Interestingly, this unique scale
can be expressed as the geometric average, rt =

√
rργ rFM , of two lengths associated

with important balances in the cone–jet: rFM = (εε0Q/K)1/3 is the electrical relaxation
length or distance from the Taylor cone’s vertex where the electrical relaxation time
and the fluid’s residence time become comparable, causing the breakdown of Taylor’s
solution (Fernández de la Mora & Loscertales 1994); rργ is the radius of the cone
at which the dynamic pressure equals the capillary pressure, rργ = (ρQ2/γ )1/3. It is
worth noting that rt is identical to rGC except for the presence of the small factor ε1/6,
and therefore our inclusion of the dielectric constant may seem arbitrary. However,
there are three key points that justify this: first, in our view, rt is the geometric mean
of two physical lengths, and although the group (ε0Q/K)1/3 has dimensions of length,
it does not have any physical significance unless the dielectric constant is included.
Second, electrical relaxation phenomena are clearly important in the transition region,
as demonstrated by the dependence of both the electrospray current and the total
voltage deficit on the dielectric constant. Third, the characteristic axial length L
resulting from the theory yielding rGC is much larger than rGC and has a different
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Figure 9. The electrical relaxation length rFM and the distance rργ from the cone apex where
the dynamic pressure equals the capillary pressure are comparable for all cone–jets in this
study. The geometric average of rργ and rFM , rt , is the characteristic length of the transition
region.

form, L = (ρ2KQ3/γ 2ε0)
1/3 (Gañán-Calvo 2004); furthermore, the combination of

rGC and L produces a total voltage deficit that depends on the flow rate. Therefore,
Gañán-Calvo’s theory and its characteristic lengths rGC and L are not applicable to
our cone–jets.

The merging of rργ and rFM into a single characteristic length suggests that rργ

and rFM need to be comparable for any combination of the flow rate, density,
surface tension, viscosity and dielectric constant associated with a stable cone–jet.
This is confirmed in figure 9, which displays rt , the ratio rργ /rFM and QFM for the
electrosprays studied in this paper: rργ is typically larger than rFM , but their ratio is
restricted to a range between 0.5 and 3.5. The significance of the ratio rργ /rFM was
first noticed by Fernández de la Mora & Loscertales (1994), who cast it in the form
of the dimensionless flow rate QFM = (rργ /rFM )3, and pointed out that this group
was of order one for a wide range of liquids, flow rates and electrical conductivities.
N(ε) and M(ε) can be estimated by solving the algebraic equations

16(M + N)

3aπMN3βε1/2
= 1,

a(M + 4N)

4πN2(α − g)βε1/6
= 1. (3.18)

The resulting values of N and M for formamide, propylene carbonate and tributyl
phosphate are 0.26 and 6.33, 0.28 and 5.28, and 0.52 and 5.12, respectively. Thus, the
transition region becomes more slender for increasing dielectric constant, which is in
agreement with the numerical results of Higuera (2003). Physically, this is due to the
shielding of the electric field inside the liquid by the polarization charge, which slows
down the injection of charge from the liquid bulk into the surface in the attempt to
restore equipotentiality. We expect to have underestimated the values of M and N
by factors of order one, due to the strong dependence of τµ : ∇v on R(z), and the
disproportionate weight of the exit radius of the transition region in the evaluation
of ∆µ. Thus, when solving (3.18), the resulting N is more representative of R(z) near
the end of the transition region, than of the averaged or characteristic radius rn. The
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characteristic length rt .

underestimate of rn also translates into an underestimate of ln, since a smaller axial
length will be required to produce the ohmic voltage deficit.

Since the radial and longitudinal characteristic lengths have the same scaling,
the geometry of the transition region normalized with rt should be insensitive to
changes of the liquid flow rate, surface tension, density and viscosity. An independent
validation of this observation can be attempted with actual geometries of cone–
jets, e.g. using the numerical solutions reported by Higuera (2003). Figure 2 of this
reference shows profiles of the transition region for a liquid with a dielectric constant
of 5 and a Reynolds number of 1, and for two different flow rates, QH =0.27 and
QH = 4.8. Figure 10(a) reproduces these profiles using the same length unit as in
the original article, rH = (ε2

0γ /ρK2)1/3, which is the same for both flow rates. The
17.7-fold change in QH results in an obvious variation of the transition region’s size.
However, when the radial and axial coordinates are rescaled with rt ,

x

rt

=
1

ε1/6Q
1/2
H

x

rH

, (3.19)

the resulting profiles are nearly identical, as shown in figure 10(b). Although not
attempted, we could have obtained a better agreement by slightly shifting the origin
of the axial coordinates, which is fixed in Higuera’s model by an asymptotic relation
within an error of rt/ε

1/6Q
1/2
H (approximately within 1.4 units in figure 10b). The

merging of the very different profiles of figure 10(a) when using rt as length unit is
a striking result. In our opinion, it is a sign of the accuracy of Higuera’s model and
the correctness of rt as the fundamental scale of the transition region. Furthermore,
defining the centre of the transition region as the axial location where the conduction
and convected currents become equal, and the characteristic radius rn as the radius
of the cone–jet at this point, figure 3(a) of Higuera yields the centre at z/rt

∼= 1.8,
and a characteristic radius rn/rt

∼= 0.67. This value for ε = 5 compares well with our
experimental estimate of rn/rt

∼= 0.52 for tributyl phosphate, ε = 8.91. Furthermore,
defining the characteristic length of the transition region as the length within which
80 % of the conduction current becomes convected current, Higuera’s figure yields a
value of ln/rt

∼= 9.2, while our estimate for tributyl phosphate is ln/rt
∼= 5.12. The

likely reason for our underestimate of the characteristic lengths has been outlined
above.

We have derived the scale rt using an experimental observation (the independence
between the droplets’ voltage deficit and the flow rate) combined with a macroscopic
balance of the mechanical energy in the cone–jet, and it is worth exploring whether
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this result may shed some light on the balance of forces in the transition region.
To this end, we start with the momentum equation in the axial direction given by
Gañán-Calvo (2004) for a slender jet,

d

dz

(
1

2π2

ρQ2

R4

)
+

d

dz

( γ

R

)
+

6µQ

πR2

d

dz

(
1

R

dR

dz

)
=

2σEs

R
+

ε0

2

d

dz

[
(ε − 1)E2

s + Eo2

n

]
,

(3.20)

which is approximately valid in the transition region and includes conservation of
mass and the balance of stresses in the surface of revolution. The pressure is separated
into capillary, polarization and electrostatic components, while the viscous shear is
substituted by the electric drag 2σEs/R on the surface. The identical scaling of the
radial and axial lengths suggests that the solution of this equation when properly
normalized, R(z/rt )/rt , must be independent of the flow rate. In order to non-
dimensionalize (3.20) in a manner consistent with the sought solution, we express
the surface charge and the tangential component of the electric field in terms of the
surface and conduction currents, σ = IsR/2Q and Es = Ic/πR2K , and use rt and
(γQK)1/2 as the length and current scales to write

Q
1/2
FM

2π

d

dz̃

(
1

R̃4

)
+ π

d

dz̃

(
1

R̃

)
+

6

ε1/3Re

1

R̃2

d

dz̃

(
1

R̃

dR̃

dz̃

)

=
Ĩs Ĩc

R̃2
+

d

dz̃

[
(ε − 1)

2πεQ
1/2
FM

Ĩ 2
c

R̃4
+

πεQ
1/2
FM

8
Ĩ 2
s R̃2

]
, (3.21)

where symbols capped with a tilde stand for dimensionless variables. Since the
electric drag Ĩs Ĩc/R̃

2 is the driving force, the independence of R̃(z̃) of the flow
rate suggests that any term multiplied by a power of QFM is negligible. Thus, the
dominant balance in the transition region for most cone–jets appears to be between
the capillary and the electric drag terms, while the viscous stress may replace the
capillary pressure at small Reynolds numbers (i.e. in fluids with high viscosities
and/or high electrical conductivities). Interestingly, the rt and I ∼ (γQK)1/2 scaling
also make the asymptotic boundary conditions for the momentum equation and the
electric field (Higuera 2003) nearly independent of the flow rate: the asymptotic
value of the electric field far upstream in the Taylor cone is E ∼ I/(KR2), which
is independent of the flow rate, while the asymptotic value of the jet radius far
downstream, R ∼ (ε0ρ

2/γ )1/8Q3/4/(I 1/4z1/8), has a negligible dependence on the flow

rate, R̃ ∼ Q
1/16
FM /(Ĩ 1/4z̃1/8ε1/8). In other words, both the equation of conservation of

momentum and the required far-field boundary conditions, when made dimensionless
with rt and (γQK)1/2, are compatible with a solution R̃(z̃) that does not depend on
the flow rate.

Finally, the dissipation of energy that predominantly takes place in the transition
region increases the temperature of the fluid by the amount �T :

�T =
PΩ + Pµ

ρQc
∼ a(ε)β(ε)

c

(
µ2γK

ε0Qρ3

)1/2

, (3.22)

where the asymptotic relation is valid for small Reynolds numbers. (The smaller the
Re, the larger the viscous dissipation and the temperature increase.) The magnitude
of �T is substantial for cone–jets with high electrical conductivities and low flow
rates. For example, although the temperature increase is just 1◦C for PC4 at I =
18 nA, we estimate values as high as 11 and 27 ◦C for PC2 and FORM1 near the
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minimum flow rates. One of the most interesting research areas in electrosprays
is the study of nanojets and the associated phenomenology such as the emission
of nanodroplets and molecular ions. The formation of these nanometric structures
requires the electrospraying of fluids with high electrical conductivities, typically of
the order of 0.5 S m−1 and higher, and is favoured by operation at low flow rates. It
is evident that temperature variations in these cone–jets are quite large and will need
to be accounted for in their modelling.

4. Conclusions
We have studied electrosprays in the cone–jet mode in a wide range of flow rates,

electrical conductivities and employing three fluids with significantly different dielectric
constants. Although the main experimental thrust has been the characterization of
the voltage deficit via retarding potential spectrometry, we have also measured other
parameters such as the total current and the charge and diameter of droplets. Our
interest in the voltage deficit, which is a droplet parameter, stems from its relationship
with the physics of the transition region of the cone–jet. In fact, we find that the
largest fraction of the voltage deficit results from the viscous and ohmic dissipations of
energy taking place in this area. The retarding-potential measurements show that the
voltage deficit strongly depends on the electrical conductivity, viscosity and dielectric
constant of the fluid, and is independent of the flow rate. This last result has profound
implications in the physics of cone–jets: combined with the well-established law for
the current, I ∼ (γQK)1/2, it requires that both the radial and axial lengths of the
transition region scale with a single characteristic length, rt = (ρεε0Q

3/γK)1/6, where
rt is the geometric mean of an electrical relaxation length and a length resulting from
the balance of capillary and dynamic pressures. The fact that the values of these last
two lengths are similar throughout a wide range of operational conditions, together
with the substantial dependence of the electrospray current and the voltage deficit on
the dielectric constant, indicate that electrical relaxation effects are important in the
transition region.

We have further confirmed the validity of rt by showing that Higuera’s
numerical solution for the profile of the transition region, non-dimensionalized
with rt , is invariant to changes of the flow rate. Higuera’s model solves the full
electrohydrodynamic equations for the cone–jet with appropriate far-field boundary
conditions. Finally, we notice that the dissipation of energy significantly increases
the temperature of fluids with moderate and high electrical conductivities. The
temperature field, and the resulting influence on the transport coefficients and surface
energy, will need to be considered when modelling the physics of cone–jets in this
most interesting high-conductivity regime.

I am indebted to Professor J. Fernández de la Mora for his guidance throughout
the years. This project was started during my PhD under his supervision. This work
was funded by the Jet Propulsion Lab award number 1354544; I am grateful to
Dr J. Ziemer and Dr I. Mikellides for their support.
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